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SUMMARY

Although it has been recognized at least since the time of Darwin and Agassiz that climate has varied
significantly over geologic time, the study of global palaeoclimate did not come into its own until the
theory of continental drift became ascendant. Initial studies in the early 1960s used climate models to
test the reconstructions of continental positions. These studies, many collected in a pair of symposium
volumes edited by A. E. M. Nairn, used a zonal model of climate or simple modifications thereof to
predict how certain palaeoclimatic indicators — principally evaporites, coals, carbonates, red beds, and
eolian sandstones — should be distributed on the continents through time if the continental reconstruc-
tions were correct. Even at that early stage in the development of continental reconstructions, past
patterns of sedimentation were more clearly explained than had previously been the case.

Continental reconstructions eventually began to stabilize, at least with respect to the major plates, in
the late 1970s. Most of the information for positioning the continents came from paleomagnetic and
structural data, but some elements of continental reconstructions relied heavily on climatic data — and
the zonal climate model — for positioning. Nevertheless, it was at this time that studies of global
palaeoclimate, independent of the concerns about the positions of the continents, could begin in earnest.
A primary need was independence of the continental reconstructions from palaeoclimatic data, an ideal
even now fully realized only for the late Mesozoic and Cenozoic.

The term ‘conceptual climate model” was coined by J. E. Kutzbach in reference to models published
in the early 1980s. Like numerical models, conceptual climate models are based on the fundamentals of
atmospheric circulation as determined from studies of the modern climate system, without explicitly
treating atmospheric dynamics. They are reproducible and useful for developing an understanding of
major changes in climate patterns driven by the changing positions of the continents. Despite their
simplicity and non-explicit treatment of atmospheric dynamics, conceptual climate models have proved
to be surprisingly robust in that the patterns predicted by explicitly dynamical models are similar for any
given geologic period.
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Global palaeoclimate has long been of interest to
geologists. In the early 1800s, Agassiz (1828) and
Darwin (1842) recognized that climate has varied
significantly over geologic time in different parts of the
world. In the late 1800s, Chamberlin (1897, 1899a—c)
discussed the possible climatic influences of changing
atmospheric concentrations of carbon dioxide, par-
ticularly in reference to the Ice Ages. Chamberlin’s
work foresaw much of the work on carbon dioxide
that is so important today. Croll (1875, in Brooks
1949) anticipated later quantitative work on varia-
tions in the Earth’s orbital parameters and their effect
on climate change.

The most prescient of the early works on pre-
Quaternary paleoclimate was the treatment by
Koppen & Wegener (1924), Die Klimate der geologischen
Vorzeit, which combined Képpen’s simplified models
of zonal climate with the continental drift hypotheses
of Wegener. This work was analysed by the geo-
grapher, C. E. P. Brooks (1926, revised 1949), in a
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comprehensive analysis of evidence for palaeoclimates.
Brooks (1949) noted that ‘. . . palacoclimatological
evidence plays a considerable part in the working out
of the theory [on continental drift], which in turn, if
accepted, completely alters the aspect of the problem
of climatic changes. . . . Brooks (1949) was extremely
critical of Képpen & Wegener (1924), pointing out a
number of discrepancies in their arguments, and
concluded that the preponderance of evidence
supports a static world. This so-called ‘fixist’ view of
global palaeoclimate also was adhered to by Matthew
(1939), who studied the distributions of vertebrates,
but was opposed by Ma (1937), who worked on
Chinese corals.

Part of the rationale for the theory of continental
drift was the evidence of dramatic changes in climate
during Earth history in parts of the world. Such
evidence required that either (i) climate patterns have
changed dramatically during Earth history, or (ii) the
continents had moved. Képpen & Wegener (1924)
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settled on the latter explanation, Brooks (1949) on the
former. In fact, there was a third and more likely
possibility, namely, that the continents had moved
and that climate had changed dramatically. Interest-
ingly, the period on which Brooks (1949) focused most
closely — Late Carboniferous and Permian — was such
a time, and thus was an unfortunate, if logical, choice.

The study of pre-Quaternary global palacoclimate
did not begin to come into its own until the theory of
continental drift became ascendant. The most signifi-
cant initial studies appeared in the early 1960s in a
pair of symposium volumes edited by A. E. M. Nairn
(Nairn 1961a, 1964). These studies fell into three
categories: (i) outlines of the palaeoclimatic history of
certain time intervals or certain parts of the world; (ii)
discussions of the climatic significance of various rocks
and fossils, such as red beds and plants (Krausel 1961;
Van Houten 1961, 1964; Dorf 1964); and (iii) recon-
structions of continental plate positions based on
palaeoclimatic data (e.g. Briden & Irving 1964; Nairn
& Thorley 1961). The thrust of many of these studies,
particularly in the 1964 volume, and of many sub-
sequent papers in this vein (Briden 1968, 1970;
Drewry et al. 1974), was to use climate models and
palaeoclimate data to test the reconstructions of
continental positions that were based on palaeo-
magnetism. The reader will recall that the use of
palaeomagnetism to reconstruct continental positions
and, indeed, the entire theory of continental drift,
were being actively studied at this time. The history
leading to the volumes edited by Nairn is fully
discussed by him (Nairn 19614) and by Bucher
(1964).

The studies that used palaeoclimate to try to
interpret continental reconstructions employed a
zonal model of climate —a genecralization of modern
climate patterns into zones or belts parallel to lati-
tude — or simple modifications of the zonal model. The
zonal model was used to predict how certain palaco-
climatic indicators — principally evaporites, coals, car-
bonates, red beds, and eolian sandstones — should be
distributed on the moving continents through time
(Briden & Irving 1964; Bucher 1964). Even at that
early stage, in the 1960s, in the development of
continental reconstructions, many past patterns of
sedimentation were more clearly explained than had
previously been the case. Interestingly, continental
drift reconstructions were not rejected for the late
Paleozoic and early Mesozoic - the interval during
which the supercontinent existed — despite the fact
that the sedimentation patterns and reconstructions
did not seem to fit (Briden & Irving 1964; Drewry et
al. 1974; Stehli 1968, 1970). This was the interval on
which Brooks (1949) had focused; subsequently it has
been shown that climate was probably least zonal at
that time (e.g. Parrish e/ al. 1982).

The aforementioned quote from Brooks (1949)
raised an issue that has plagued global palacoclimato-
logy, and even now has not been completely eradi-
cated (e.g. Witzke 1990; Scotese & Barrett 1990). The
problem is one of circular reasoning, and was at the
time impossible to escape. Eventually, however, conti-
nental reconstructions began to stabilize, at least with
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respect to the configuration of the major plates, in the
late 1970s. Most of the data used to position the plates
came from palacomagnetism and structural geology,
but some elements of continental reconstructions still
relied heavily on the distribution of climatic indi-
cators — and the zonal climate model - for positioning
(e.g. Heckel & Witzke 1979). Nevertheless, it was at
this time that studies of global palaeoclimate, indepen-
dent of the concerns about the positions of the
continents, could begin in earnest. A primary need
was independence of the continental reconstructions
from palaeoclimatic data, an ideal even now fully
realized only for the late Mesozoic and Cenozoic.

The term ‘conceptual climate model’ was coined by
J. E. Kutzbach in reference to models published in the
early 1980s (Parrish & Curtis 1982; Parrish 1982;
Lloyd 1982), but these were by no means the first such
models employed in palaeoclimatology. The zonal
climate model, used to predict the distribution of
climatic indicators with the purpose of testing conti-
nental reconstructions, also falls into that category.
Like numerical models, conceptual climate models are
based on some understanding of the fundamentals of
atmospheric and oceanic circulation as determined
from studies of the modern system. However, the
conceptual models predict only patterns of climate -
atmospheric pressure, wind directions, precipitation —
without explicitly treating atmospheric or oceanic
dynamics. Conceptual models employed before 1982
include, for example, those by Gordon (1973) to
investigate possible Cretaceous ocean circulation
patterns; Ross (1975) to investigate the distributions of
Ordovician trilobites; Nairn & Smithwick (1976),
who were interested in the strange climate of the
supercontinent Pangea in the Permian; and Ziegler et
al. (1977), who combined information on biogeo-
graphic and sedimentologic indicators of Silurian
climate. Dott (1979) and Drewry et al. (1974) used all
or parts of the zonal model to study the distribution of
tropical and global climatic indicators, respectively.
In addition to models by Parrish (1982; Parrish &
Curtis 1982; Parrish et al. 1982; and later papers),
conceptual models of varying complexity have been
used since 1982 by Marsaglia & Klein (1983), Witzke
(1990), and Boucot & Gray (1983), among others.
Semi-quantitative, non-dynamical climate models
have been constructed by Scotese & Summerhayes
(1986) and Gyllenhaal et al. (1991).

Conceptual models are reproducible and useful for
developing an understanding of major changes in
climate patterns driven by the changing positions of
the continents. Despite their simplicity and non-
explicit treatment of atmospheric dynamics, well-
founded conceptual models have proved to be surpris-
ingly robust in that the climate patterns are similar to
those predicted by numerical models for any given
geologic period. Compare, for example, the concep-
tual atmospheric and oceanic circulation models of
Parrish for the Permian and Triassic (Parrish & Curtis
1982; Ziegler e al. 1981) with the numerical
model results for Pangea by Kutzbach (Kutzbach &
Gallimore 1989; Kutzbach e/ al. 1990).

Recent developments in numerical modcling are
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rapidly obviating the need for conceptual models,
which have, among other advantages, those of being
inexpensive and quick to produce. One such develop-
ment is the attention given to Pangean climates by a
number of groups using different models, which will
facilitate comparisons of numerical models (Kutzbach
& Gallimore 1989; Chandler et al. 1992; Crowley et al.
1989; Valdes & Sellwood 1992; Thompson et al. 1992).
Another development is that desktop versions of some
numerical models are making the models accessible to
more users (e.g. Thompson et al. 1992).
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